Duckietown Challenges | Home | Challenges | Submissions |
Last computed:
#1 FANG MEIYI 3650 | #2 jiang peng 3401 | #3 Peter Almasi 3541 |
copy link | copy link | copy link |
Rank (user) | User | Submission | complete | User label | Traveled distance↑ | Survival time↑ | Lateral deviation ↓ | Major infractions ↓ |
1 | FANG MEIYI 🇸🇬 | 3650 | 1/1 | test | 3.1 | 16. | 0.61 | 0. |
2 | jiang peng | 3401 | 1/1 | RL-TH-shi | 3.1 | 16. | 0.87 | 1. |
3 | Peter Almasi 🇭🇺 | 3541 | 1/1 | My solution using reinforcement learning | 3.1 | 16. | 0.95 | 1. |
4 | Anastasiya Nikolskaya 🇷🇺 | 3344 | 1/1 | JetBrains Research | 3.1 | 16. | 1.01 | 0. |
- | jiang peng | 3315 | 1/1 | RL - TH -hhk | 1.86 | 16. | 0.73 | 5.8 |
- | jiang peng | 3742 | 1/1 | LF sim test - wh | 1.86 | 8. | 0.39 | 2.4 |
5 | Rami Al-Naim 🇷🇺 | 2708 | 1/1 | challenge-aido_LF-baseline-duckietown | 1.24 | 16. | 1.03 | 2.2 |
6 | Konstantin Chaika | 2695 | 1/1 | challenge-aido_LF-baseline-duckietown | 1.24 | 10. | 0.54 | 0.4 |
- | Peter Almasi 🇭🇺 | 3129 | 1/1 | Baseline solution using reinforcement learning | 1.24 | 8. | 0.27 | 1.4 |
- | jiang peng | 3440 | 1/1 | RL-TH-HHK | 1.24 | 6. | 0.23 | 1.2 |
This list includes repeated entries from the same user and the entries from the organizers.
#1 FANG MEIYI 3650 | #2 jiang peng 3401 | #3 Peter Almasi 3541 |
copy link | copy link | copy link |
Rank (user) | User | Submission | complete | User label | Traveled distance↑ | Survival time↑ | Lateral deviation ↓ | Major infractions ↓ |
1 | FANG MEIYI 🇸🇬 | 3650 | 1/1 | test | 3.1 | 16. | 0.61 | 0. |
- | FANG MEIYI 🇸🇬 | 3332 | 1/1 | test | 3.1 | 16. | 0.76 | 0. |
2 | jiang peng | 3401 | 1/1 | RL-TH-shi | 3.1 | 16. | 0.87 | 1. |
- | jiang peng | 3424 | 1/1 | RL-TH-shi | 3.1 | 16. | 0.91 | 0. |
3 | Peter Almasi 🇭🇺 | 3541 | 1/1 | My solution using reinforcement learning | 3.1 | 16. | 0.95 | 1. |
4 | Anastasiya Nikolskaya 🇷🇺 | 3344 | 1/1 | JetBrains Research | 3.1 | 16. | 1.01 | 0. |
- | Anastasiya Nikolskaya 🇷🇺 | 3450 | 1/1 | JetBrains Research | 3.1 | 16. | 1.1 | 0.6 |
- | jiang peng | 3419 | 1/1 | RL-TH-shi | 2.48 | 16. | 0.72 | 0.4 |
- | jiang peng | 3404 | 1/1 | RL-TH-shi | 2.48 | 16. | 0.75 | 0. |
- | jiang peng | 3412 | 1/1 | RL-TH-shi | 2.48 | 16. | 0.79 | 0. |
- | jiang peng | 3384 | 1/1 | RL-TH-shi | 2.48 | 16. | 0.79 | 1.4 |
- | jiang peng | 3425 | 1/1 | RL-TH-shi | 2.48 | 16. | 0.82 | 0. |
- | jiang peng | 3398 | 1/1 | RL-TH-shi | 2.48 | 16. | 0.82 | 0.2 |
- | jiang peng | 3402 | 1/1 | RL-TH-shi | 2.48 | 16. | 1.07 | 0.2 |
- | jiang peng | 3427 | 1/1 | RL-TH-shi | 1.86 | 16. | 0.55 | 1.2 |
- | jiang peng | 3315 | 1/1 | RL - TH -hhk | 1.86 | 16. | 0.73 | 5.8 |
- | jiang peng | 3418 | 1/1 | RL-TH-shi | 1.86 | 10. | 0.59 | 1.8 |
- | jiang peng | 3742 | 1/1 | LF sim test - wh | 1.86 | 8. | 0.39 | 2.4 |
- | jiang peng | 3740 | 1/1 | LF sim test - wh | 1.86 | 8. | 0.41 | 1.6 |
- | jiang peng | 3416 | 1/1 | RL-TH-shi | 1.86 | 6. | 0.18 | 0. |
- | Julian Zilly | 3496 | 1/1 | Baseline-IL-logs-tensorflow | 1.24 | 16. | 0.52 | 0. |
5 | Rami Al-Naim 🇷🇺 | 2708 | 1/1 | challenge-aido_LF-baseline-duckietown | 1.24 | 16. | 1.03 | 2.2 |
- | Julian Zilly | 3760 | 1/1 | Baseline-IL-logs-tensorflow | 1.24 | 14. | 0.64 | 2.6 |
- | Julian Zilly | 2978 | 1/1 | Baseline-IL-logs-tensorflow | 1.24 | 12. | 0.58 | 0. |
6 | Konstantin Chaika | 2695 | 1/1 | challenge-aido_LF-baseline-duckietown | 1.24 | 10. | 0.54 | 0.4 |
- | Peter Almasi 🇭🇺 | 3129 | 1/1 | Baseline solution using reinforcement learning | 1.24 | 8. | 0.27 | 1.4 |
- | Andrea Daniele 🇮🇹 | 2881 | 1/1 | minimal_agent (Python 3) | 1.24 | 8. | 0.34 | 2. |
- | Liam Paull 🇨🇦 | 2372 | 1/1 | minimal_agent (Python 3) | 1.24 | 8. | 0.34 | 2. |
- | jiang peng | 3440 | 1/1 | RL-TH-HHK | 1.24 | 6. | 0.23 | 1.2 |
- | jiang peng | 3328 | 1/1 | RL - TH -xyz | 1.24 | 6. | 0.23 | 1.6 |
7 | Nicky Eichmann | 3624 | 1/1 | Baseline solution using reinforcement learning | 1.24 | 4. | 0.1 | 0.6 |
- | Nicky Eichmann | 3630 | 1/1 | 1.24 | 4. | 0.12 | 0.6 | |
- | jiang peng | 3327 | 1/1 | RL - TH -xyz | 1.24 | 4. | 0.13 | 1.2 |
- | Liam Paull 🇨🇦 | 2378 | 1/1 | minimal_agent_python2 (Python 2) | 1.24 | 4. | 0.15 | 1. |
- | Andrea Censi 🇨🇭 | 3059 | 1/1 | rotation | 0.62 | 16. | 0.49 | 7.8 |
- | jiang peng | 3410 | 1/1 | RL - TH -hhk | 0.62 | 16. | 0.57 | 7.2 |
- | jiang peng | 3439 | 1/1 | RL-TH-HHK | 0.62 | 16. | 0.93 | 0. |
8 | Alexander Karavaev | 2861 | 1/1 | challenge-aido_LF-baseline-duckietown | 0.62 | 8. | 0.21 | 0.6 |
- | Julian Zilly | 2961 | 1/1 | Baseline-IL-logs-tensorflow | 0.62 | 6. | 0.24 | 2. |
- | Julian Zilly | 2591 | 1/1 | baseline-IL-logs-tensorflow | 0.62 | 6. | 0.39 | 0. |
9 | sebastian glatz | 3750 | 1/1 | 0.62 | 4. | 0.12 | 0.6 | |
10 | Victor Adolfo Romero Cano 🇨🇴 | 3598 | 1/1 | 0.62 | 4. | 0.12 | 0.6 | |
11 | Amaury Camus 🇨🇭 | 3368 | 1/1 | challenge-aido_LF-template-random | 0.62 | 4. | 0.12 | 0.6 |
- | Amaury Camus 🇨🇭 | 3217 | 1/1 | challenge-aido_LF-template-random | 0.62 | 4. | 0.12 | 0.6 |
- | Amaury Camus 🇨🇭 | 3142 | 1/1 | challenge-aido_LF-template-random | 0.62 | 4. | 0.12 | 0.6 |
- | Liam Paull 🇨🇦 | 2823 | 1/1 | challenge-aido_LF-template-random | 0.62 | 4. | 0.12 | 0.6 |
- | Andrea Censi 🇨🇭 | 2809 | 1/1 | challenge-aido_LF-template-random - random_agent | 0.62 | 4. | 0.12 | 0.6 |
- | Andrea Censi 🇨🇭 | 2633 | 1/1 | challenge-aido_LF-template-random | 0.62 | 4. | 0.12 | 0.6 |
- | Andrea Censi 🇨🇭 | 2621 | 1/1 | challenge-aido_LF-template-random | 0.62 | 4. | 0.12 | 0.6 |
- | Liam Paull 🇨🇦 | 2472 | 1/1 | challenge-aido_LF-template-random | 0.62 | 4. | 0.12 | 0.6 |
- | Jacopo Tani | 2442 | 1/1 | random_agent | 0.62 | 4. | 0.12 | 0.6 |
- | Andrea Censi 🇨🇭 | 2421 | 1/1 | random_agent | 0.62 | 4. | 0.12 | 0.6 |
- | Liam Paull 🇨🇦 | 2396 | 1/1 | random_agent | 0.62 | 4. | 0.12 | 0.6 |
- | Andrea Censi 🇨🇭 | 2365 | 1/1 | random_agent | 0.62 | 4. | 0.12 | 0.6 |
- | Bhairav Mehta | 2759 | 1/1 | challenge-aido_LF-template-ros - Template solution using ROS | 0.62 | 4. | 0.17 | 0.2 |
12 | Egor Zamotaev | 2645 | 1/1 | challenge-aido_LF-template-ros - Template solution using ROS | 0.62 | 4. | 0.17 | 0.2 |
- | Konstantin Chaika | 2609 | 1/1 | challenge-aido_LF-template-ros - Template solution using ROS | 0.62 | 4. | 0.17 | 0.2 |
- | Alexander Karavaev | 2565 | 1/1 | challenge-aido_LF-template-ros - Template solution using ROS | 0.62 | 4. | 0.17 | 0.2 |
- | Andrea Censi 🇨🇭 | 2552 | 1/1 | challenge-aido_LF-template-ros - Template solution using ROS | 0.62 | 4. | 0.17 | 0.2 |
- | Manfred Diaz | 3695 | 1/1 | challenge-aido_LF-template-tensorflow | 0.62 | 4. | 0.19 | 0.4 |
13 | Victor Guerra 🇫🇷 | 2405 | 1/1 | Baseline solution using reinforcement learning | 0.62 | 2. | 0.07 | 0.6 |
14 | Bea Baselines 🐤 | 3510 | 1/1 | challenge-aido_LF-template-pytorch | 0.62 | 2. | 0.09 | 0. |
- | Liam Paull 🇨🇦 | 2496 | 1/1 | challenge-aido_LF-template-pytorch | 0.62 | 2. | 0.09 | 0.6 |
- | Bhairav Mehta | 2949 | 1/1 | Baseline solution using reinforcement learning | 0.62 | 2. | 0.1 | 0. |
- | Andrea Censi 🇨🇭 | 2386 | 1/1 | Baseline solution using reinforcement learning | 0.62 | 2. | 0.1 | 0. |
- | Bhairav Mehta | 2925 | 1/1 | challenge-aido_LF-template-pytorch | 0.62 | 2. | 0.11 | 0. |
- | Nicky Eichmann | 2449 | 1/1 | Baseline solution using reinforcement learning | -1.24 | 16. | 1.01 | 4.2 |